Figure/Table detail

Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification
Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG
Remote Sensing Technology and Application, 2024, 39(2): 393-404.   DOI: 10.11873/j.issn.1004-0323.2024.2.0393

ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

MSLRR_

TWRF

Asphalt1018 63988.7966.0169.9472.0890.9870.9393.2284.8788.77
Meadows102 08984.0965.5394.4379.3684.6276.7595.4492.1695.44
Gravel103 05446.3557.3261.0578.4442.0787.1880.1094.9898.23
Trees101 33554.0491.7253.8778.7967.2693.7498.2993.1588.87
Sheets105 01985.4199.7597.4889.6266.7799.9798.6997.6999.57
Soil101 32036.3156.2177.5377.3035.6885.6294.7784.3698.74
Bitumen103 67242.6688.5866.6292.7360.2593.3890.8296.1199.96
Bricks1093770.2972.4658.1372.5745.6181.2779.0792.0897.27
Shadows1018098.8599.6449.9699.0175.2598.3499.8399.4599.66
OA//64.87±0.0569.11±0.0574.53±0.0678.48±0.0561.05±0.0480.72±0.02392.35±0.0190.77±0.0294.98±0.02
AA//67.42±0.0477.14±0.1869.89±0.0482.21±0.0363.17±0.287.46±0.01192.25±0.0292.76±0.0596.28±0.04
Kappa//56.54±0.0661.40±0.0567.85±0.0672.50±0.0550.82±0.0475.52±0.0389.90±0.0287.91±0.0293.42±0.03
Table 3 Classification accuracy of different methods for PaviaU
Other figure/table from this article