总悬浮物浓度是水环境重要参数之一,二类水体光谱特征复杂,光谱特征与悬浮物浓度之间关系不能用简单的线性模型来表示。利用2017年7月12日~13日2 d间对闽江40点位进行水质采样和光谱测量,结合光谱响应函数模拟GF-1 WFV1各波段遥感反射率,分析遥感因子与总悬浮物浓度相关性。利用相关系数较高的波段及组合b3、b3/b2和b3/b1,构建PSO-RBF和传统RBF神经网络总悬浮物浓度反演模型,同时建立以b3/b2为自变量的经验比值模型。结果表明:与传统RBF神经网络和经验模型相比,PSO\|RBF神经网络模型效果更佳,R2=0.890,RMSE=3.01 mg·L-1。基于训练好的PSO-RBF模型,应用GF-1 WFV1遥感影像对闽江下游水体总悬浮物浓度进行反演,影像反演的总悬浮物浓度RMSE=3.65 mg·L-1,MRE=14.11%,遥感影像反演结果精度明显高于克里金空间插值结果。分析其空间分布特征,从上游方向往下游方向呈现增加趋势,马尾至闽江入海口河段总悬浮物浓度增加明显。